

- [1] Consider a homogeneous gallium arsenide semiconductor at T = 300 K with $N_d = 10^{16}$ cm⁻³ and Na = 0. (a) Calculate the thermal-equilibrium values of electron and hole concentrations. (b) For an applied E-field of 10 V/cm⁻³, calculate the drift current density. (c) Repeat parts (a) and (b) if $N_d = 0$ and $N_a = 10^{16}$ cm⁻³. (n_i is 1.8 x 10⁶ cm⁻³).
- [2] In a particular semiconductor material, $\mu_n = 1000 \text{ cm}^2/\text{V-s}$, $\mu_p = 600 \text{ cm}^2/\text{V-s}$, and $N_c = N_v = 10^{19} \text{ cm}^{-3}$. The measured conductivity of the intrinsic material is $\sigma = 10^{-6} (\Omega \text{-cm})^{-1}$ at T = 300 K. Find the conductivity at T = 500 K.
- [3] Consider a semiconductor that is uniformly doped with N_d = 10¹⁴ cm⁻³ and N_a = 0, with an applied electric field of E = 100 V/cm. Assume that μ_n = 1000 cm²/V-s and μ_p = 0. Also assume the following parameters: N_c = 2 x 10¹⁹ (T/300) ^{3/2} cm-3, N_v = 1 x 10¹⁹ (T/300) ^{3/2} cm-3, E_g = 1.10 eV. (a) Calculate the electric current density at T = 300 K. (b) At what temperature will this current increase by 5 %? You only need to write the equation as a function of T, don't calculate it. (Assume the mobilities are independent of temperature.)